A review of Hybrid High-Order methods: formulations, computational aspects, links with other methods

Daniele A. Di Pietro, Alexandre Ern, Simon Lemaire
https://sites.google.com/site/chezsimonlemaire

École des Ponts ParisTech – CERMICS Laboratory

POEMs Workshop, Georgia Tech, USA
October 28, 2015
Outline

Literature review

Setting

The HHO method in primal form

Links HHO/other polytopal discretization methods

The HHO method in mixed form

Conclusion
Outline

Literature review

Setting

The HHO method in primal form

Links HHO/other polytopal discretization methods

The HHO method in mixed form

Conclusion
Lowest-order polytopal discretization methods

Finite Volume methods

- Mixed/Hybrid Finite Volume (M/HFV) [Droniou and Eymard, 06 + Eymard, Gallouët, and Herbin, 10]

Mimetic/Compatible methods

- Mimetic Finite Difference (MFD) [Brezzi, Lipnikov, and Shashkov, 05 + Beirão da Veiga, Lipnikov, and Manzini, 14]
 \(\leadsto\) equivalence with M/HFV [Droniou, Eymard, Gallouët, and Herbin, 10]
- Discrete Geometric Approach (DGA) [Codecasa, Specogna, and Trevisan, 10]
- Compatible Discrete Operator (CDO) [Bonelle and Ern, 14]

Non-conforming/penalized methods

- Cell-Centered Galerkin (CCG) [Di Pietro, 12]

Unifying frameworks

- Gradient Schemes [Droniou, Eymard, Gallouët, and Herbin, 13]
- CDO
High-order polytopal discretization methods

Finite Element (FE) methods [Wachspress, 75 + Tabarraei and Sukumar, 04 + Gillette, Rand, and Bajaj]

Virtual Element (VE) methods
- Conf. VE [Beirão da Veiga, Brezzi, Cangiani, Manzini, Marini, and Russo, 13]
- Non-conf. VE [Ayuso de Dios, Lipnikov, and Manzini]
- Unified framework [Cangiani, Manzini, and Sutton]

Hybridizable DG (HDG) methods [Cockburn, Gopalakrishnan, and Lazarov, 09]

Weak Galerkin (WG) methods [Wang and Ye, 13]

Hybrid High-Order (HHO) methods [Di Pietro, Ern, and Lemaire, 14]
Outline

Literature review

Setting

The HHO method in primal form

Links HHO/other polytopal discretization methods

The HHO method in mixed form

Conclusion
Model problem

Let $\Omega \subset \mathbb{R}^d$, $d \geq 2$, be an open, connected, bounded polytopal domain.

Problem: Find a potential $u : \Omega \to \mathbb{R}$ such that

$$\begin{cases}
- \text{div}(\mathbb{M} \nabla u) = f & \text{in } \Omega \\
 u = 0 & \text{on } \partial \Omega
\end{cases}$$

$s.t.$ $f \in L^2(\Omega)$, \mathbb{M} symmetric, piecewise Lipschitz, matrix-valued coeff. s.t. for a.e. $x \in \Omega$, and all $\xi \in \mathbb{R}^d$ s.t. $|\xi| = 1$,

$$0 < \mu_b \leq \mathbb{M}(x)\xi : \xi \leq \mu_\# < +\infty$$
Admissible mesh sequences

Definition
The mesh sequence \((\mathcal{T}_h)_{h \in \mathcal{H}}\) is admissible if, for all \(h \in \mathcal{H}\), \(\mathcal{T}_h\) is a finite collection of polygons/polyhedra \(T\) s.t. \(\overline{\Omega} = \bigcup_{T \in \mathcal{T}_h} \overline{T}\), and \(\mathcal{T}_h\) admits a matching simplicial submesh \(\mathcal{S}_h\) such that \((\mathcal{S}_h)_{h \in \mathcal{H}}\) is

- **shape-regular** in the usual sense of Ciarlet;
- **contact-regular**: every simplex \(S \subseteq T\) is s.t. \(h_S \approx h_T\).

\[\leadsto \text{Assumption: } M \in \left[\mathbb{P}_d^0(\mathcal{T}_h)\right]_{\text{sym}}^{d \times d} \quad \forall h \in \mathcal{H}, \text{ and } \forall T \in \mathcal{T}_h, \ M_T := M|_T \text{ is s.t.} \]

\[\mu_{b,T} \leq M_T \xi \cdot \xi \leq \mu_{\#_T} \text{ (local anisotropy ratio: } \rho_T := \mu_{\#_T} / \mu_{b,T})\]

Figure: Admissible meshes in 2D
Outline

Literature review

Setting

The HHO method in primal form

Links HHO/other polytopal discretization methods

The HHO method in mixed form

Conclusion

Discrete unknowns \((k \geq 0)\)

Figure: DoFs associated with potential unknowns, \(d = 2\)

Local hybrid set of potential unknowns

\[
U_k^T := \mathcal{P}_d^k(T) \times \bigg\{ \prod_{F \in \mathcal{F}_T} \mathcal{P}_{d-1}^k(F) \bigg\}
\]

Local reduction operator

\[
\mathbb{I}_T^k : H^1(T) \rightarrow U_k^T \text{ s.t., for all } v \in H^1(T),
\quad \mathbb{I}_T^k v := \left(\Pi_T^k v, \left(\Pi_{F}^k v \right)_{F \in \mathcal{F}_T} \right)
\]
Potential reconstruction operator

Local potential reconstruction operator: \(p_{T}^{k+1} : U_{T}^{k} \rightarrow \mathbb{P}_{d}^{k+1}(T) \)

For \(v_{T} = (v_{T}, v_{F_{T}}) \in U_{T}^{k} \), \(p_{T}^{k+1}v_{T} \in \mathbb{P}_{d}^{k+1}(T) \) is s.t. \(\int_{T} p_{T}^{k+1}v_{T} = \int_{T} v_{T} \) and satisfies, for all \(w \in \mathbb{P}_{d}^{k+1}(T) \),

\[
\left(\mathbb{M}_{T} \nabla p_{T}^{k+1}v_{T}, \nabla w \right)_{T} = -\left(v_{T}, \text{div(} \mathbb{M}_{T} \nabla w \text{)} \right)_{T} + \sum_{F \in F_{T}} \left(v_{F}, \mathbb{M}_{T} \nabla w \cdot n_{T,F} \right)_{F}
\]

\(\rightarrow \) diffusivity included in reconstruction operator

Computation
Requires to invert a SPD matrix of size \(N_{(k+1),d} \) with \(N_{k,l} := \text{dim}(\mathbb{P}^{k}_{l}) \)

Approximation
For all \(v \in H^{k+2}(T) \), the following holds:

\[
\| v - p_{T}^{k+1}I_{T}^{k}v \|_{T} + h_{T}\| \nabla (v - p_{T}^{k+1}I_{T}^{k}v) \|_{T} \lesssim \rho_{T}^{1/2}h_{T}^{k+2}\| v \|_{k+2,T}
\]
\[a_T(u_T, v_T) := (M_T \nabla p_T^{k+1} u_T, \nabla p_T^{k+1} v_T)_T + j_T(u_T, v_T) \]

Local stabilization bilinear form: \(j_T : U_T^k \times U_T^k \to \mathbb{R} \)

For all \(u_T, v_T \in U_T^k \),

\[j_T(u_T, v_T) := \sum_{F \in F_T} \frac{\mu_{T,F}}{h_F} (\Pi_F^k (q_T^{k+1} u_T - u_F), \Pi_F^k (q_T^{k+1} v_T - v_F))_F, \]

where \(\mu_{T,F} := M_T n_F \cdot n_F \), and \(q_T^{k+1} w_T := w_T + (p_T^{k+1} w_T - \Pi_T^k p_T^{k+1} w_T) \)

\(\leadsto \) the use of \(\Pi_F^k \) is reminiscent of Lehrenfeld-Schöberl stabilization for HDG [Lehrenfeld, 10]

\(\leadsto \) the operator \(q_T^{k+1} \) is new and opens the door to lower-order cell unknowns

Approximation

For all \(v \in H^{k+2}(T) \), the following bound holds:

\[j_T(\underline{1}_T^k v, \underline{1}_T^k v)^{1/2} \lesssim \mu_{u,T}^{1/2} \rho_T^{1/2} h_T^{k+1} \| v \|_{k+2,T} \]
Global hybrid set of potential unknowns

\[\underline{U}_h^k := \mathbb{P}_d^k(\mathcal{T}_h) \times \mathbb{P}_{d-1}^k(\mathcal{F}_h) \]

Discrete problem

Find \(u_h \in \underline{U}_h^k, 0 \) s.t.

\[a_h(u_h, v_h) = (f, v_{\mathcal{T}_h}) \quad \text{for all} \quad v_h \in \underline{U}_h^k, 0 \]

with \(a_h(u_h, v_h) := \sum_{T \in \mathcal{T}_h} a_T(u_T, v_T) \)

Stability

\[\rho_T^{-1} \| \mathbb{M}_T^{1/2} \nabla v_T \|_{T}^2 + \rho_T^{-1} \sum_{F \in \mathcal{F}_T} \frac{\mu_{T,F}}{h_F} \| v_T - v_F \|_{F}^2 \lesssim a_T(v_T, v_T) \]
Error estimates

Theorem (Energy-norm error estimate)

Assume $u \in U_0 \cap H^{k+2}(\mathcal{T}_h)$. Then,

$$
\| M^{1/2}(\nabla u - \nabla h_{P(T)}^{k+1} u_h) \| \lesssim \left\{ \sum_{T \in \mathcal{T}_h} \mu_{\#}, T \rho_T^2 h_T T^{2(k+1)} \| u \|^2_{k+2,T} \right\}^{1/2}
$$

Theorem (L^2-norm error estimate)

Assume elliptic regularity under the form $\| z(g) \|_{2,T_h} \lesssim \mu_b^{-1}\| g \|$. Assume $f \in H^{k+\delta}(\Omega)$, with $\delta = 0$ for $k \geq 1$ and $\delta = 1$ for $k = 0$. Then,

$$
\mu_b \| \Pi_{T_h}^k u - u_{T_h} \| \lesssim \mu_{\#}^{1/2} \rho h \left\{ \sum_{T \in \mathcal{T}_h} \mu_{\#}, T \rho_T^2 h_T T^{2(k+1)} \| u \|^2_{k+2,T} \right\}^{1/2} + \| f \|_{k+\delta}
$$
Local conservativity

1 - Introduce the local bilinear form
\[\hat{a}_T(w_T, v_T) := (M_T \nabla p_T^{k+1} w_T, \nabla p_T^{k+1} v_T)_T + \sum_{F \in \mathcal{F}_T} \frac{\mu_{T,F}}{h_F} (w_T - w_F, v_T - v_F)_F \]

2 - Define the local isomorphism \(c_T^k : U_T^k \to U_T^k \) s.t.
\[\hat{a}_T(c_T^k w_T, v_T) = \hat{a}_T(w_T, v_T) + j_T(w_T, v_T) \quad \forall \ v_T \in U_T^k \]

3 - Define the local gradient recons. operator \(G_T^{k+1} := \nabla (p_T^{k+1} \circ c_T^k) \)

Lemma
For all \(T \in \mathcal{T}_h \), the following local equilibrium holds:
\[(M_T G_T^{k+1} u_T, \nabla v_T)_T - \sum_{F \in \mathcal{F}_T} (\Phi_{T,F}(u_T), v_T)_F = (f, v_T)_T \quad \forall \ v_T \in P_d^k(T) \]

with conservative numerical flux
\[\Phi_{T,F}(u_T) := M_T G_T^{k+1} u_T \cdot n_T,F - \frac{\mu_{T,F}}{h_F} [(c_T^k u_T - u_T) - (c_F^k u_T - u_F)] \]
Solution strategy

Offline step \leadsto 2 fully parallelizable and f-independent substeps

- 1 - Compute the potential reconstruction operator $p_{T_h}^{k+1}$
 \leadsto invert $\text{card}(T_h)$ SPD matrices of size $N_{(k+1),d}$

- 2 - For all $T \in T_h$, compute the trace-based $t_T^k : \mathbb{P}_{d-1}^k(F_T) \to \mathbb{P}_d^k(T)$ and datum-based $d_T^k : \mathbb{P}_d^k(T) \to \mathbb{P}_d^k(T)$ lifting operators s.t.
 \[
 t_T^k w_{F_T} \in \mathbb{P}_d^k(T) \text{ solves } \quad a_T((t_T^k w_{F_T}, 0), (v_T, 0)) = -a_T((0, w_{F_T}), (v_T, 0)) \quad \forall v_T \in \mathbb{P}_d^k(T)
 \]
 \[
 d_T^k \Psi_T \in \mathbb{P}_d^k(T) \text{ solves } \quad a_T((d_T^k \Psi_T, 0), (v_T, 0)) = (\Psi_T, v_T)_T \quad \forall v_T \in \mathbb{P}_d^k(T)
 \]
 \leadsto invert $\text{card}(T_h)$ SPD matrices of size $N_{k,d}$

Online step

- 1 - Given $f \in L^2(\Omega)$, compute its L^2-orthogonal projection $\Pi_{T_h}^k f$ onto $\mathbb{P}_d^k(T_h)$

- 2 - Solve the global problem: Find $u_{F_h} \in \mathbb{P}_{d-1,0}^k(F_h)$ s.t.
 \[
 a_h(t_{T_h}^k u_{F_h}, t_{T_h}^k v_{F_h}) = (\Pi_{T_h}^k f, t_{T_h}^k v_{F_h}) \quad \forall v_{F_h} \in \mathbb{P}_{d-1,0}^k(F_h)
 \]
 where $t_{T_h}^k w_{F_h} := (t_{T_h}^k w_{F_h}, w_{F_h})$
 \leadsto solve a linear system of size $\approx \text{card}(F_h) \times N_{k,(d-1)}$

- 3 - Compute the discrete solution according to $\underline{u}_h = (t_{T_h}^k u_{F_h} + d_{T_h}^k \Pi_{T_h}^k f, u_{F_h})$
Outline

Literature review

Setting

The HHO method in primal form

Links HHO/other polytopal discretization methods

The HHO method in mixed form

Conclusion
Assume here $\mathbb{M} = \text{Id}_d$.

The HHO(l) family: $U_{T}^{k,l} := \mathbb{P}_{d}(T) \times \mathbb{P}_{d-1}^{k}(\mathcal{F}_{T})$, $l \in \{k - 1, k, k + 1\}$

- The choice $l = k$ corresponds to the original HHO method
- The Non-conf. VE method is, up to equivalent stabilization, a member of the HHO family (for $l = k - 1$) [Cockburn, Di Pietro, and Ern, 15]
- The final system has the same size for any choice of l

Similarities/differences among discontinuous skeletal methods

- HHO fits into the HDG framework [Cockburn, Di Pietro, and Ern, 15]
- The flux unknowns associated with HDG and WG belong to $\mathbb{P}_{d}^{k}(T)^{d}$, whereas the flux unknowns associated with HHO belong to $\nabla \mathbb{P}_{d}^{k+1}(T)$: smaller local problems must be solved to eliminate flux unknowns in HHO
Outline

Literature review

Setting

The HHO method in primal form

Links HHO/other polytopal discretization methods

The HHO method in mixed form

Conclusion

Discrete unknowns \((k \geq 0)\)

Local \{hybrid set of flux unknowns\} + \{set of potential unknowns \(:= \mathbb{P}^k_d(T)\)\}

\[
\mathbb{S}^k_T := \mathbb{M}_T \nabla \mathbb{P}^k_d(T) \times \left\{ \prod_{F \in \mathcal{F}_T}^k \mathbb{P}^k_{d-1}(F) \right\}
\]

Local reduction operator: \(S^+(T) := \{ t \in L^q(T) \mid \text{div} \ t \in L^2(T) \}, \ q > 2 \)

\[
\mathbb{I}^k_T : S^+(T) \rightarrow \mathbb{S}^k_T \quad \text{s.t.,} \quad \forall t \in S^+(T), \quad \mathbb{I}^k_T t := \left(\mathbb{M}_T \nabla y, \left(\prod^k_F \mathbb{P}^k_d(t \cdot n_F) \right)_{F \in \mathcal{F}_T} \right),
\]

with \(y \in \mathbb{P}^k_d(T)\) a solution of \((\mathbb{M}_T \nabla y, \nabla w)_T = (t, \nabla w)_T \quad \forall w \in \mathbb{P}^k_d(T)\)
Divergence reconstruction operator

Local divergence reconstruction operator: $D^k_T : S^k_T \rightarrow P^k_d(T)$

For all $t_T = (t_T, t_{\mathcal{T}_T}) \in S^k_T$, $D^k_T t_T \in P^k_d(T)$ satisfies, for all $w \in P^k_d(T)$,

$$
(D^k_T t_T, w)_T = -(t_T, \nabla w)_T + \sum_{F \in \mathcal{T}_T} (t_F \varepsilon_{T,F}, w)_F
$$

where $\varepsilon_{T,F} := n_F \cdot n_{T,F}$

Computation

Requires to invert a SPD matrix of size $N_{k,d} = \binom{k+d}{k}$

Commuting property

The following holds for all $t \in S^+(T)$:

$$
D^k_T \Pi^k_T t = \Pi^k_T (\text{div} \ t)
$$

\Rightarrow this ensures inf-sup stability for the discretization
Flux reconstruction operator

Local flux reconstruction operator: \(F_T^{k+1} : S_T^k \to M_T \nabla P_d^{k+1}(T) \)

For all \(t_T = (t_T, t_F) \in S_T^k \), \(F_T^{k+1} t_T := M_T \nabla z \), where \(z \in P_d^{k+1}(T) \) satisfies, for all \(w \in P_d^{k+1}(T) \),

\[
(M_T \nabla z, \nabla w)_T = -(D_T^k t_T, w)_T + \sum_{F \in F_T} (t_F \varepsilon_T, F, w)_F
\]

\(\sim \) diffusivity included in reconstruction operator

Computation

Requires to invert a SPD matrix of size \(N_{(k+1),d} \)

Approximation

For all \(v \in H^{k+2}(T) \), letting \(t := M_T \nabla v \), the following holds for all \(F \in F_T \):

\[
\| M_T^{-1/2} (t - F_T^{k+1} 1_T t) \|_T + h_F^{1/2} \mu_{T,F}^{-1/2} \| (t - F_T^{k+1} 1_T t) \cdot n_F \|_F \lesssim \rho_T^{1/2} \mu^{1/2}_{\#T} h_T^{k+1} \| v \|_{k+2,T}
\]
Stabilization

\[H_T(s_T, t_T) := (\mathbb{M}_T^{-1} F_T^{k+1} s_T, F_T^{k+1} t_T)_T + J_T(s_T, t_T) \]

Local stabilization bilinear form: \(J_T : S^k_T \times S^k_T \rightarrow \mathbb{R} \)

For all \(s_T, t_T \in S^k_T \),

\[J_T(s_T, t_T) := \sum_{F \in \mathcal{F}_T} \frac{h_F}{\mu_{T,F}} \left((F_T^{k+1} s_T) \cdot n_T - s_T, (F_T^{k+1} t_T) \cdot n_T - t_T \right)_F \]

Approximation

For all \(v \in H^{k+2}(T) \), the following bound holds with \(t := \mathbb{M}_T \nabla v \):

\[J_T(\mathbb{I}_T^k t, \mathbb{I}_T^k t)^{1/2} \leq \rho_T^{1/2} \mu_{\#T}^{1/2} h_T^{k+1} \| v \|_{k+2, T} \]
Discrete problem

Mixed weak formulation of (1)

Let $S := H(\text{div}, \Omega)$, $V := L^2(\Omega)$. Find $(s, u) \in S \times V$ s.t.

$$
\begin{cases}
(M^{-1} s, t) + (u, \text{div } t) = 0 & \forall t \in S \\
-(\text{div } s, v) = (f, v) & \forall v \in V
\end{cases}
$$

Global \{hybrid set of flux unknowns\} \+ \{set of potential unknowns\} := $P^k_d(\mathcal{T}_h)$

$$
S^k_{sh} := M \nabla P^k_d(\mathcal{T}_h) \times P^k_d(\mathcal{F}_h)
$$

Discrete problem: Find $(s_h, u_{\mathcal{T}_h}) \in S^k_{sh} \times P^k_d(\mathcal{T}_h)$ s.t.

$$
\begin{cases}
H_h(s_h, t_{\mathcal{T}_h}) + (u_{\mathcal{T}_h}, D^k_{\mathcal{T}_h} t_{\mathcal{T}_h}) = 0 & \forall t_{\mathcal{T}_h} \in S^k_{sh} \\
-(D^k_{\mathcal{T}_h} s_h, v_{\mathcal{T}_h}) = (f, v_{\mathcal{T}_h}) & \forall v_{\mathcal{T}_h} \in P^k_d(\mathcal{T}_h)
\end{cases}
$$

with $H_h(s_h, t_{\mathcal{T}_h}) := \sum_{T \in \mathcal{T}_h} H_T(s_T, t_T)$

Stability

$$
\mu^{-1}_{\#, T} \| t_{\mathcal{T}_h} \|_T^2 + \mu^{-1}_{\#, T} \sum_{F \in \mathcal{F}_T} h_F \| t_F \|_F^2 \lesssim H_T(t_{\mathcal{T}_h}, t_{\mathcal{T}_h}) + \text{inf-sup}
$$
Error estimates

Theorem (Error estimate for the flux)

Assume \(u \in V \cap H^{k+2}(\mathcal{T}_h) \) and \(s \in S \cap S^+(\mathcal{T}_h) \). Then,

\[
\| M^{-1/2} (s - F_{\mathcal{T}_h}^{k+1} s_{h}) \| \lesssim \left\{ \sum_{T \in \mathcal{T}_h} \mu_{\#,T} \rho_T h_T^{2(k+1)} \| u \|_{k+2,T}^2 \right\}^{1/2}
\]

Theorem (Supercloseness of the potential)

Assume elliptic regularity under the form \(\| z(g) \|_{2,\mathcal{T}_h} \lesssim \mu_b^{-1} \| g \| \). Assume \(f \in H^{k+\delta}(\Omega) \), with \(\delta = 0 \) for \(k \geq 1 \) and \(\delta = 1 \) for \(k = 0 \). Then,

\[
\mu_b \| \Pi_{\mathcal{T}_h}^k u - u_{\mathcal{T}_h} \| \lesssim \mu_{\#,\rho}^{1/2} \rho^{1/2} h \left\{ \sum_{T \in \mathcal{T}_h} \mu_{\#,T} \rho_T h_T^{2(k+1)} \| u \|_{k+2,T}^2 \right\}^{1/2} + h^{k+2} \| f \|_{k+\delta}
\]
Characterization of the solution

Unpatched global hybrid set of flux unknowns

\[
\tilde{S}_h^k := \bigotimes_{T \in \mathcal{T}_h} S_T^k, \quad \tilde{Z}_h^k := \left\{ \tilde{t}_h \in \tilde{S}_h^k \mid \sum_{T \in \mathcal{T}_F} \tilde{t}_{T,F} = 0, \forall F \in \mathcal{F}_h^i \right\}
\]

\[\leadsto\text{natural isomorphism } L_h^k \text{ from } \tilde{Z}_h^k \text{ to } S_h^k\]

Potential-to-flux mapping operator: \(\tilde{\varsigma}_h^k : U_h^k \rightarrow \tilde{S}_h^k\)

For \(v_T \in U_T^k \), \(\tilde{\varsigma}_T^k v_T \) satisfies, for all \(\tilde{t}_T \in S_T^k \),

\[
H_T(\tilde{\varsigma}_T^k v_T, \tilde{t}_T) = -(v_T, D_T^k \tilde{t}_T)_T + \sum_{F \in \mathcal{F}_T} (\tilde{t}_{T,F}, v_F)_F
\]

\[\leadsto \text{There holds: for all } v_T \in U_T^k, \ (F_T^{k+1} \circ \tilde{\varsigma}_T^k) v_T = M_T \nabla p_T^{k+1} v_T
\]

Characterization of the solution

Let \(\tilde{u}_h \in U_{h,0}^k \) solve \(A_h(\tilde{u}_h, v_h) = (f, v_{\mathcal{T}_h}) \) for all \(v_h \in U_{h,0}^k \), with

\[
A_h(\tilde{u}_h, v_h) := \sum_{T \in \mathcal{T}_h} (M_T \nabla p_T^{k+1} \tilde{u}_T, \nabla p_T^{k+1} v_T)_T + \sum_{T \in \mathcal{T}_h} J_T(\tilde{\varsigma}_T^k \tilde{u}_T, \tilde{\varsigma}_T^k v_T)
\]

Then, there holds \(\tilde{\varsigma}_h^k \tilde{u}_h \in \tilde{Z}_h^k \) and \((s_h, u_{\mathcal{T}_h}) = (L_h^k(\tilde{\varsigma}_h^k \tilde{u}_h), \tilde{u}_{\mathcal{T}_h})\).
Solution strategy

Offline step \leadsto 4 fully parallelizable and f-independent substeps

- 1 - Compute the divergence reconstruction operator $D^k_{T_h}$
 \leadsto invert $\text{card}(T_h)$ SPD matrices of size $N_{k,d}$
- 2 - Compute the flux reconstruction operator $F^{k+1}_{T_h}$
 \leadsto invert $\text{card}(T_h)$ SPD matrices of size $N_{(k+1),d}$
- 3 - Compute the potential-to-flux mapping operator $\tilde{\varsigma}^k_{T_h}$
 \leadsto invert $\text{card}(T_h)$ SPD matrices of size $N_{k,d} + \text{card}(\mathcal{F}_T)N_{k,(d-1)}$
- 4 - For all $T \in T_h$, compute the lifting operators $t^k_T : \mathcal{P}_{d-1}^k(\mathcal{F}_T) \to \mathcal{P}_d^k(T)$ and $d^k_T : \mathcal{P}_d^k(T) \to \mathcal{P}_d^k(T)$ associated with the bilinear form A_T
 \leadsto invert $\text{card}(T_h)$ SPD matrices of size $N_{k,d}$

Online step

- 1 - Given $f \in L^2(\Omega)$, compute its L^2-orthogonal projection $\Pi^k_{T_h} f$ onto $\mathcal{P}_d^k(T_h)$
- 2 - Solve the global coercive problem: Find $\tilde{u}_{\mathcal{F}_h} \in \mathcal{P}_{d-1,0}^k(\mathcal{F}_h)$ s.t.
 $$A_h(t^k_{T_h} \tilde{u}_{\mathcal{F}_h}, t^k_{T_h} \nu_{\mathcal{F}_h}) = (\Pi^k_{T_h} f, t^k_{T_h} \nu_{\mathcal{F}_h}) \quad \forall \nu_{\mathcal{F}_h} \in \mathcal{P}_{d-1,0}^k(\mathcal{F}_h)$$
 \leadsto solve a linear system of size $\approx \text{card}(\mathcal{F}_h) \times N_{k,(d-1)}$
- 3 - Compute the discrete solution according to $(s_h, u_{T_h}) = (L^k_{T_h} (\tilde{\varsigma}^k_{T_h} \tilde{u}_h), \tilde{u}_{T_h})$, with $\tilde{u}_h = (t^k_{T_h} \tilde{u}_{\mathcal{F}_h} + d^k_{T_h} \Pi^k_{T_h} f, \tilde{u}_{\mathcal{F}_h})$
Outline

Literature review

Setting

The HHO method in primal form

Links HHO/other polytopal discretization methods

The HHO method in mixed form

Conclusion
Assets of HHO methods

- Capable of handling general polytopal meshes
- Dimension-independent construction
- Arbitrary approximation order (starting from $k = 0$)
- Physical fidelity
 - Local conservation
 - Robustness w.r.t. physical parameters in various situations: heterogeneous/anisotropic diffusion, quasi-incompressible linear elasticity, advection-dominated transport, Stokes flow driven by large irrotational forces, Biot’s model of poroelasticity (coupled with DG)...
- Reduced computational cost after static condensation

$$N_{\text{DoFs}}^{\text{HHO}} \approx \frac{1}{2} k^2 \text{card}(\mathcal{F}_h) \quad \text{vs.} \quad N_{\text{DoFs}}^{\text{DG}} \approx \frac{1}{6} k^3 \text{card}(\mathcal{T}_h)$$

- Natural offline/online solution strategy: adapted to the multi-query context
THANK YOU FOR YOUR ATTENTION

hp-version composite discontinuous Galerkin methods for elliptic problems on complicated domains.

Unified analysis of discontinuous Galerkin methods for elliptic problems.

Ayuso de Dios, B., Lipnikov, K., and Manzini, G.
The nonconforming virtual element method.

On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations.

Basic principles of virtual element methods.

The Mimetic Finite Difference Method for Elliptic Problems, volume 11 of *MS&A*.
Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes.

Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes.

Cangiani, A., Manzini, G., and Sutton, O. J.
Conforming and nonconforming virtual element methods for elliptic problems.

Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin methods.
Published online. DOI: 10.1051/m2an/2015051.

Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second-order elliptic problems.

A new set of basis functions for the discrete geometric approach.
Cell-centered Galerkin methods for diffusive problems.

Mathematical Aspects of Discontinuous Galerkin Methods, volume 69 of *Mathématiques & Applications*.
Springer, Berlin Heidelberg.

An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators.

An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow.

A mixed finite volume scheme for anisotropic diffusion problems on any grid.

A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods.
References IV

Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations.

Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces.

Gillette, A., Rand, A., and Bajaj, C.
Construction of scalar and vector Finite Element families on polygonal and polyhedral meshes.

Conforming polygonal finite elements.

Academic Press.
A weak Galerkin element method for second-order elliptic problems.