NUMERICAL INTEGRATION of HOMOGENEOUS FUNCTIONS and POLYNOMIALS on POLYTOPES

Eric B. Chin
UC DAVIS

Jean B. Lasserre
LAAS-CNRS

N. Sukumar
UC DAVIS

POEMs 2015
Atlanta, GA // October 28, 2015

Research support of the NSF is gratefully acknowledged
Problem statement

Determine

\[\int_{P \subset \mathbb{R}^d} f(x) \, dx \]

- \(f(x) \) is a homogeneous function
- \(P \) is a convex or nonconvex polytope
Existing methods

Three methods to integrate functions on polytopes

- Triangulation
- Divergence theorem
 \[
 \int_V \nabla \cdot F \, dV = \int_S F \cdot n \, dS
 \]
- Moment fitting
Background

Euler’s homogeneous function theorem and Generalized Stokes’s theorem
Background

Euler’s homogeneous function theorem and Generalized Stokes’s theorem

Extension of Lasserre’s method

Integration over convex and nonconvex polytopes
Contents

Background
Euler’s homogeneous function theorem and Generalized Stokes’s theorem

Extension of Lasserre’s method
Integration over convex and nonconvex polytopes

Main results
Contents

Background
Euler’s homogeneous function theorem and Generalized Stokes’s theorem

Extension of Lasserre’s method
Integration over convex and nonconvex polytopes

Main results

Application: Elastic fracture with the X-FEM
Contents

Background

Euler’s homogeneous function theorem and Generalized Stokes’s theorem

Extension of Lasserre’s method

Integration over convex and nonconvex polytopes

Main results

Application: Elastic fracture with the X-FEM

Conclusions and outlook
Background
A continuously differentiable function $f(x)$ is said to be positive homogeneous of degree q if:

$$f(\lambda x) = \lambda^q f(x) \quad \forall \lambda > 0,$$

and then it also satisfies:

$$q f(x) = \langle \nabla f(x), x \rangle \quad \forall x \in \begin{cases} \mathbb{R}^d & \text{if } q > 0 \\ \mathbb{R}^d \setminus \{0\} & \text{if } q < 0 \end{cases}$$

$\langle \cdot, \cdot \rangle$: inner product \quad d: dimension
Proof

By definition, a homogeneous function of degree \(q \) has the property

\[
\lambda^q f(x) = f(\lambda x)
\]

Define \(x' := \lambda x \) and calculate \(\frac{\partial}{\partial \lambda} \):

\[
q \lambda^{q-1} f(x) = \frac{\partial f}{\partial x'} \cdot \frac{\partial x'}{\partial \lambda} = \frac{\partial f}{\partial x'} \cdot x
\]

Let \(\lambda = 1 \):

\[
q f(x) = \frac{\partial f}{\partial x} \cdot x = \langle \nabla f(x), x \rangle
\]

Converse is also readily established
Examples of homogeneous fns.

\[q = 0: \]
\[f(x) = 1 \]

\[q = 1: \]
\[f(x) = x + y \]

\[q = 2: \]
\[f(x) = 3x^2 + 2xy \]
Examples of homogeneous fns.

\[q = 0: \]
\[f(x) = 1 \]

\[q = 1: \]
\[f(x) = x + y \]

\[q = 2: \]
\[f(x) = 3x^2 + 2xy \]

\[q = -\frac{1}{2}: \]
\[f(x) = \frac{1}{\sqrt{r}}, \quad \text{where} \]
\[r = \sqrt{x^2 + y^2} \]

\[q = 0: \]
\[f(x) = \cos \theta, \quad \text{where} \]
\[\theta = \tan^{-1} \frac{y}{x} \]

\[q = \frac{1}{2}: \]
\[f(x) = \sqrt{r} \cos \theta \]
Generalized Stokes’s theorem

\[
\int_M d\omega = \int_{\partial M} \omega
\]

\[
\downarrow
\]

\[
\int_M (\nabla \cdot X) f(x) \, dx + \int_M X \cdot \nabla f(x) \, dx = \int_{\partial M} (X \cdot n) f(x) \, d\sigma
\]

- \(X\): vector field
- \(M\): region of integration
- \(d\sigma\): Lebesgue measure on \(\partial M\)
Extension of Lasserre’s method

First applied to X-FEM by Mousavi and S (Comp. Mech., 2011)

Extended to nonconvex regions by Chin et al. (Comp. Mech., 2015, doi 10.1007/s00466-015-1213-7) [PDF]

Method uses properties of homogeneous functions and generalized Stokes’s theorem
Main results
Reducing integration to bdry.

Apply Stokes’s theorem with $X := x$ and $f (x)$ is q-homogeneous:

$$d \int_P f (x) \, dx + \int_P \langle \nabla f (x) , x \rangle \, dx = \sum_{i=1}^{m} \int_{F_i} (x \cdot n_i) \, f (x) \, d\sigma$$

P: polygon \hspace{1cm} F_i: boundary facets

Apply Euler’s homogeneous fn. theorem, $qf (x) = \langle \nabla f (x) , x \rangle$:

$$d \int_P f (x) \, dx + q \int_P f (x) \, dx = \sum_{i=1}^{m} \int_{F_i} (x \cdot n_i) \, f (x) \, d\sigma$$

$$\int_P f (x) \, dx = \frac{1}{d+q} \sum_{i=1}^{m} \int_{F_i} (x \cdot n_i) \, f (x) \, d\sigma$$
\[\int_{P} f(\mathbf{x}) \, d\mathbf{x} = \frac{1}{d + q} \sum_{i=1}^{m} \int_{F_{i}} (\mathbf{x} \cdot \mathbf{n}_{i}) f(\mathbf{x}) \, d\sigma \]

- \(F_{i} \subset \mathbf{a}_{i} \cdot \mathbf{x} = b_{i} \): equation of a hyperplane
- \(\mathbf{n}_{i} = \frac{\mathbf{a}_{i}}{\|\mathbf{a}_{i}\|} \): unit normal to hyperplane
- \(\mathbf{x} \cdot \mathbf{n}_{i} = \mathbf{x} \cdot \frac{\mathbf{a}_{i}}{\|\mathbf{a}_{i}\|} = \|\mathbf{a}_{i}\| = \frac{b_{i}}{\|\mathbf{a}_{i}\|} \)

\[\therefore \quad \int_{P} f(\mathbf{x}) \, d\mathbf{x} = \frac{1}{d + q} \sum_{i=1}^{m} \int_{F_{i}} \frac{b_{i}}{\|\mathbf{a}_{i}\|} f(\mathbf{x}) \, d\sigma \quad (*) \]

- Using \((*)\), one can reduce integration to the boundary of the polytope
Sign of \(a_i\) **and** \(b_i\)

Question: \(x = 1\) and \(-x = -1\) produce the same line, yet only one gives the correct answer in \((*)\). Which is correct?

Answer: Given the vertices of the polygon, travel around the polygon in a **clockwise** direction.
Question: \(x = 1 \) and \(-x = -1\) produce the same line, yet only one gives the correct answer in (*)\). Which is correct?

Answer: Given the vertices of the polygon, travel around the polygon in a **clockwise** direction.
Question: $x = 1$ and $-x = -1$ produce the same line, yet only one gives the correct answer in (*). Which is correct?

Answer: Given the vertices of the polygon, travel around the polygon in a **clockwise** direction.
Sign of a_i **and** b_i

Question: $x = 1$ and $-x = -1$ produce the same line, yet only one gives the correct answer in (*). Which is correct?

Answer: Given the vertices of the polygon, travel around the polygon in a **clockwise** direction.
Sign of a_i and b_i

Question: $x = 1$ and $-x = -1$ produce the same line, yet only one gives the correct answer in (*). Which is correct?

Answer: Given the vertices of the polygon, travel around the polygon in a **clockwise** direction.
Question: \(x = 1 \) and \(-x = -1 \) produce the same line, yet only one gives the correct answer in (*). Which is correct?

Answer: Given the vertices of the polygon, travel around the polygon in a \textit{clockwise} direction.
Sign of a_i and b_i

Question: $x = 1$ and $-x = -1$ produce the same line, yet only one gives the correct answer in (*). Which is correct?

Answer: Given the vertices of the polygon, travel around the polygon in a *clockwise* direction.
Sign of a_i and b_i

$$\det \begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = (y_1 - y_2)x + (x_2 - x_1)y + (x_1y_2 - y_1x_2)$$

$$a_i = \{y_1 - y_2, x_2 - x_1\}^T \quad b_i = -(x_1y_2 - y_1x_2)$$
Further reducing the integration

Reapplying Stokes’s theorem

\[\int_M (\nabla \cdot X) f(x) \, dx + \int_M X \cdot \nabla f(x) \, dx = \int_{\partial M} (X \cdot n) f(x) \, d\sigma \]

Select:

- \(M \) as \(F_i \)
- \(\partial M \) as \(v_{ij} \) (vertices in \(\mathbb{R}^2 \) – intersection of \(F_i \) and \(F_j \))
- \(X := x - x_0 \) (\(x_0 \): any point on hyperplane containing \(F_i \))
- \(f(x) \) is a homogeneous function of degree \(q \)
Integral of $f(x)$ on F_i

Reapplying Stokes’s theorem

\[
\int_M (\nabla \cdot X) f(x) \, dx + \int_M X \cdot \nabla f(x) \, dx = \int_{\partial M} (X \cdot n) f(x) \, d\sigma
\]

\[
\Rightarrow
\]

\[
\int_{F_i} f(x) \, d\sigma = \frac{1}{d + q - 1} \left[\sum_{j=1}^{2} d_{ij} f(v_{ij}) + \int_{F_i} \langle \nabla f(x), x_0 \rangle \, d\sigma \right]
\]

(**)

- $d_{ij} := \langle x - x_0, n_{ij} \rangle$ – algebraic distance from v_{ij} to x_0
- $\int_{F_i} \langle \nabla f(x), x_0 \rangle \, d\sigma$ can be applied recursively
\[
\int_{\mathcal{P}} f(\mathbf{x}) \, d\mathbf{x} = \frac{1}{d + q} \sum_{i=1}^{m} \int_{F_i} \frac{b_i}{\|a_i\|} f(\mathbf{x}) \, d\sigma
\]

\[
\int_{F_i} f(\mathbf{x}) \, d\sigma = \frac{1}{d + q - 1} \left[\sum_{j=1}^{2} d_{ij} f(\mathbf{v}_{ij}) + \int_{F_i} \langle \nabla f(\mathbf{x}), \mathbf{x}_0 \rangle \, d\sigma \right]
\]

- These formulas can be used to reduce integration to the vertices of the polytope
- Further, a closed-form cubature rule can be developed
- If the partial derivatives of \(f(\mathbf{x}) \) eventually vanish, this cubature rule is exact
Combine (*) with (**):

\[
\int_P f(\mathbf{x}) \, d\mathbf{x} = \sum_{i=1}^{m} \frac{b_i}{\|a_i\|} \sum_{j \neq i} d_{ij} I(\mathbf{v}_{ij}) \frac{1}{(q + 2)(q + 1)}
\]

where

\[
I(\mathbf{v}_{ij}) := \sum_{k=0}^{q} \frac{Q_k(\mathbf{v}_{ij})}{(q)} \quad \text{and} \quad Q_k(\mathbf{v}_{ij}) := \sum_{|\alpha|=q-k} \frac{D^{\alpha}}{\alpha!} f(\mathbf{v}_{ij}) \prod_{\ell=1}^{2} (x_{0\ell})^{\alpha_{\ell}}
\]

- \(\alpha\) is an \(n\)-tuple of nonnegative integers
- \(D\) is the differential operator in multi-index notation
Consider a region V bounded by homogeneous functions $h_i(x) = b_i$ ($i = 1, \ldots, m$) of degree q_i.

Apply Stokes’s theorem:

$$\int_V f(x) \, dx = \frac{1}{d + q} \sum_{i=1}^{m} q_i b_i \int_{A_i} \| \nabla h_i \|^{-1} f(x) \, d\sigma$$

Polar transformation:

$$\int_V f(x) \, dx = \frac{1}{2 + q} \sum_{i=1}^{m} \int_{\alpha_i}^{\beta_i} H_i^2(\theta) f(x(\theta)) \, d\theta$$

- Region bounded by equations of the form $r = H_i(\theta)$
Numerical examples
Integrate $f(x) = x^2 + xy + y^2$ over convex and nonconvex polygons

\[\int_P f(x) \, dx \approx 323.1821 \quad \int_P f(x) \, dx \approx 80.95348 \]

Results verified in LattE (De Loera et al., Comput Geom, 2013)
Integration over polyhedra

Integrate $f(x) = x^2 + y^2 + z^2$ over nonconvex polyhedra

Octahedron 5-compound

\[\int_{P} f(x) \, dx \approx 0.353553 \]

Echidnahedron

\[\int_{P} f(x) \, dx \approx 253.5696 \]

Cube 5-compound

\[\int_{P} f(x) \, dx \approx 1.250000 \]

▶ Shape data from PolyhedronData[] in Mathematica
Integration over curved region

\[A := \{ r \in [0, 1], \theta \in [\pi/4, \pi/2], \]
\[r \geq \cos \theta, r \leq \sin \theta, \theta \leq \pi/2 \} \]

\[\int_A \frac{1}{\sqrt{x^2 + y^2}} = \sqrt{2} - 1 \]

- Weakly singular integrand at the origin
- Using equation derived for a curved region, domain integral is transformed to 1D line integrals
- With 6 quadrature points, integration error is close to machine precision
Application: X-FEM (Chin & S, work in progress, 2015)
Motivation

Numerical integration in elements with discontinuous and weakly singular integrands

Current approach

New approach: without partitioning!
Discontinuous + singular ints.

- Use (*) to reduce integration, then apply quadrature
- \(f(\mathbf{x}) = \sin(\theta/2)/\sqrt{r} \): discontinuous and weakly singular
- Biunit square centered at \((0.5, 0.5)\)

Application: X-FEM (Chin & S, work in progress, 2015)
Elastic Fracture

Strong form

\[\nabla \cdot \sigma = 0 \text{ in } \Omega \]
\[u = \bar{u} \text{ on } \Gamma_u \]
\[\sigma \cdot n = \bar{t} \text{ on } \Gamma_t \]
\[\sigma \cdot n = 0 \text{ on } \Gamma_c \]

Weak form

\[a(u, \delta u) = \ell(\delta u) \quad \forall \delta u \in \mathcal{U}_0, \]

\[a(u, \delta u) := \int_{\Omega} \sigma : \delta \varepsilon \, dx, \quad \ell(\delta u) := \int_{\Gamma_t} \bar{t} \cdot \delta u \, dS \]
Displacement approximation

Standard FEM

\[u(x) = \sum_{i \in \mathcal{I}} N_i(x) u_i \]

Extended FEM [X-FEM] (Moës et al., IJNME, 1999)

\[u(x) = \sum_{i \in \mathcal{I}} N_i(x) u_i + \sum_{j \in \mathcal{J} \subseteq \mathcal{I}} N_j(x) \varphi(x) a_j + \sum_{k \in \mathcal{K} \subseteq \mathcal{I}} N_k(x) \sum_{t=1}^{2} \sum_{\alpha=1}^{4} F_{\alpha t}(x) b_{k\alpha t} \]

- \(u_i, a_j, b_{k\alpha t} \) - degrees of freedom (DOFs)
- \(\varphi(x) \) - discont. enrichment (usually \(\varphi(x) := H(x) = \begin{cases} 1 & x \in \Omega_e^+ \\ -1 & x \in \Omega_e^- \end{cases} \))
- \(F_{\alpha t}(x) \) - crack-tip enrichment

Application: X-FEM (Chin & S, work in progress, 2015)
Application: Extraction of SIFs

Mode I SIF for an inclined, embedded crack

Integrand in the interaction integral are homogeneous functions ⇒ can use Lassere’s approach to compute SIFs

For the results shown above, Triangulation is used to compute the interaction integral in cracked elements

<table>
<thead>
<tr>
<th>β</th>
<th>K_1 (exact)</th>
<th>K_1 (GD)</th>
<th>K_1 (CLS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>1.2533</td>
<td>1.2547</td>
<td>1.2549</td>
</tr>
<tr>
<td>15°</td>
<td>1.3373</td>
<td>1.3379</td>
<td>1.3378</td>
</tr>
<tr>
<td>30°</td>
<td>1.5666</td>
<td>1.5666</td>
<td>1.5662</td>
</tr>
<tr>
<td>45°</td>
<td>1.8800</td>
<td>1.8864</td>
<td>1.8861</td>
</tr>
<tr>
<td>60°</td>
<td>2.1933</td>
<td>2.1936</td>
<td>2.1935</td>
</tr>
<tr>
<td>75°</td>
<td>2.4227</td>
<td>2.4255</td>
<td>2.4251</td>
</tr>
<tr>
<td>90°</td>
<td>2.5066</td>
<td>2.5095</td>
<td>2.5088</td>
</tr>
</tbody>
</table>
Conclusions and outlook
Presented a method to *integrate homogeneous functions* over *convex and nonconvex polygons and polyhedra* using Euler’s homogeneous function theorem and generalized Stokes’s theorem.
Presented a method to integrate homogeneous functions over convex and nonconvex polygons and polyhedra using Euler’s homogeneous function theorem and generalized Stokes’s theorem.

Cubature rules for polynomials on polytopes in \mathbb{R}^d.
Presented a method to integrate homogeneous functions over convex and nonconvex polygons and polyhedra using Euler’s homogeneous function theorem and generalized Stokes’s theorem

- Cubature rules for polynomials on polytopes in \mathbb{R}^d
- Accurate and efficient integration of weakly singular functions was realized
Presented a method to integrate homogeneous functions over convex and nonconvex polygons and polyhedra using Euler's homogeneous function theorem and generalized Stokes's theorem

- Cubature rules for polynomials on polytopes in \mathbb{R}^d
- Accurate and efficient integration of weakly singular functions was realized
- Method was shown to be applicable to curved regions
Presented a method to integrate homogeneous functions over convex and nonconvex polygons and polyhedra using Euler’s homogeneous function theorem and generalized Stokes’s theorem

- **Cubature rules** for polynomials on polytopes in \mathbb{R}^d
- Accurate and efficient integration of weakly singular functions was realized
- Method was shown to be applicable to curved regions
- Showcased an application in elastic fracture using the X-FEM
Conclusions and outlook

Presented a method to integrate homogeneous functions over convex and nonconvex polygons and polyhedra using Euler’s homogeneous function theorem and generalized Stokes’s theorem

- **Cubature rules** for polynomials on polytopes in \mathbb{R}^d
- Accurate and efficient integration of weakly singular functions was realized
- Method was shown to be applicable to curved regions
- Showcased an application in elastic fracture using the X-FEM
- New integration scheme is well-suited for adoption in novel discretization techniques such as MFD, VEM, WG, DG, PUFEM, embedded interface methods, . . .